\(\int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\) [163]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 106 \[ \int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=-\frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {3 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} d}+\frac {a^2 \sqrt {a+a \sec (c+d x)}}{d (1-\sec (c+d x))} \]

[Out]

-2*a^(5/2)*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/d+3/2*a^(5/2)*arctanh(1/2*(a+a*sec(d*x+c))^(1/2)*2^(1/2)/a^
(1/2))*2^(1/2)/d+a^2*(a+a*sec(d*x+c))^(1/2)/d/(1-sec(d*x+c))

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3965, 101, 162, 65, 213} \[ \int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=-\frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{d}+\frac {3 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} d}+\frac {a^2 \sqrt {a \sec (c+d x)+a}}{d (1-\sec (c+d x))} \]

[In]

Int[Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-2*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d + (3*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/(Sqrt[2
]*Sqrt[a])])/(Sqrt[2]*d) + (a^2*Sqrt[a + a*Sec[c + d*x]])/(d*(1 - Sec[c + d*x]))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3965

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(d*b^(m - 1)
)^(-1), Subst[Int[(-a + b*x)^((m - 1)/2)*((a + b*x)^((m - 1)/2 + n)/x), x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = \frac {a^4 \text {Subst}\left (\int \frac {\sqrt {a+a x}}{x (-a+a x)^2} \, dx,x,\sec (c+d x)\right )}{d} \\ & = \frac {a^2 \sqrt {a+a \sec (c+d x)}}{d (1-\sec (c+d x))}+\frac {a^3 \text {Subst}\left (\int \frac {-a-\frac {a x}{2}}{x (-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d} \\ & = \frac {a^2 \sqrt {a+a \sec (c+d x)}}{d (1-\sec (c+d x))}+\frac {a^3 \text {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d}-\frac {\left (3 a^4\right ) \text {Subst}\left (\int \frac {1}{(-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{2 d} \\ & = \frac {a^2 \sqrt {a+a \sec (c+d x)}}{d (1-\sec (c+d x))}+\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{d}-\frac {\left (3 a^3\right ) \text {Subst}\left (\int \frac {1}{-2 a+x^2} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{d} \\ & = -\frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {3 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} d}+\frac {a^2 \sqrt {a+a \sec (c+d x)}}{d (1-\sec (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.91 \[ \int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {(a (1+\sec (c+d x)))^{5/2} \left (-2 \text {arctanh}\left (\sqrt {1+\sec (c+d x)}\right )+\frac {3 \text {arctanh}\left (\frac {\sqrt {1+\sec (c+d x)}}{\sqrt {2}}\right )}{\sqrt {2}}-\frac {\sqrt {1+\sec (c+d x)}}{-1+\sec (c+d x)}\right )}{d (1+\sec (c+d x))^{5/2}} \]

[In]

Integrate[Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((a*(1 + Sec[c + d*x]))^(5/2)*(-2*ArcTanh[Sqrt[1 + Sec[c + d*x]]] + (3*ArcTanh[Sqrt[1 + Sec[c + d*x]]/Sqrt[2]]
)/Sqrt[2] - Sqrt[1 + Sec[c + d*x]]/(-1 + Sec[c + d*x])))/(d*(1 + Sec[c + d*x])^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(239\) vs. \(2(89)=178\).

Time = 15.21 (sec) , antiderivative size = 240, normalized size of antiderivative = 2.26

method result size
default \(\frac {a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \arctan \left (\frac {\sqrt {2}}{2 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+4 \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-3 \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {2}}{2 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-4 \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+2 \cos \left (d x +c \right )\right )}{2 d \left (\cos \left (d x +c \right )-1\right )}\) \(240\)

[In]

int(cot(d*x+c)^3*(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/2/d*a^2*(a*(1+sec(d*x+c)))^(1/2)*(3*arctan(1/2*2^(1/2)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*2^(1/2
)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+4*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*(-cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)-3*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)/(-cos(d*x+c)/(cos(d*x+c)+1))
^(1/2))-4*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+2*cos(d*x+c))/(cos(d*x
+c)-1)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 196 vs. \(2 (88) = 176\).

Time = 0.34 (sec) , antiderivative size = 398, normalized size of antiderivative = 3.75 \[ \int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\left [\frac {4 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) + 4 \, {\left (a^{2} \cos \left (d x + c\right ) - a^{2}\right )} \sqrt {a} \log \left (-2 \, a \cos \left (d x + c\right ) + 2 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - a\right ) + 3 \, {\left (\sqrt {2} a^{2} \cos \left (d x + c\right ) - \sqrt {2} a^{2}\right )} \sqrt {a} \log \left (\frac {2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right ) - 1}\right )}{4 \, {\left (d \cos \left (d x + c\right ) - d\right )}}, \frac {2 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - 3 \, {\left (\sqrt {2} a^{2} \cos \left (d x + c\right ) - \sqrt {2} a^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) + 4 \, {\left (a^{2} \cos \left (d x + c\right ) - a^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right )}{2 \, {\left (d \cos \left (d x + c\right ) - d\right )}}\right ] \]

[In]

integrate(cot(d*x+c)^3*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/4*(4*a^2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) + 4*(a^2*cos(d*x + c) - a^2)*sqrt(a)*log(-2*a
*cos(d*x + c) + 2*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) - a) + 3*(sqrt(2)*a^2*cos(d*x +
 c) - sqrt(2)*a^2)*sqrt(a)*log((2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) + 3*a*c
os(d*x + c) + a)/(cos(d*x + c) - 1)))/(d*cos(d*x + c) - d), 1/2*(2*a^2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))
*cos(d*x + c) - 3*(sqrt(2)*a^2*cos(d*x + c) - sqrt(2)*a^2)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x +
c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)) + 4*(a^2*cos(d*x + c) - a^2)*sqrt(-a)*arctan(sqrt(-a)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)))/(d*cos(d*x + c) - d)]

Sympy [F(-1)]

Timed out. \[ \int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(cot(d*x+c)**3*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cot \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(cot(d*x+c)^3*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(5/2)*cot(d*x + c)^3, x)

Giac [F]

\[ \int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cot \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(cot(d*x+c)^3*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^3\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

[In]

int(cot(c + d*x)^3*(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(cot(c + d*x)^3*(a + a/cos(c + d*x))^(5/2), x)